COMPARISON OF AIRFLOW IN TYPE 36 LOW-INCOME HOUSING UNIT USING CFD SIMULATION

Authors

  • lestari lestari Universitas Tanjungpura
  • Syaiful Muazir Universitas Tanjungpura

:

https://doi.org/10.9744/dimensi.48.2.121-130

Keywords:

Airflow, airflow velocity, type 36 house

Abstract

Type 36 houses are built for people who have low income. Because of this, the buildings’ ventilation relies on natural airflow. One of the variables that affects natural ventilation is airflow. Airflow can affect the quality of indoor air, influencing the comfort and health of those within. This study aims to evaluate the designs of type 36 buildings from the perspective of the airflow through the unit. It uses computational fluid dynamics simulations to compare the pattern and velocity of airflow in each building design. There are six designs of type 36 house that have different layouts and placements of air vents. The results of the simulation and analysis show that rooms arranged in a way that allows for the placement of vents that were facing each other, even if they were in different rooms, generated continuous airflow without experiencing turbulence.

Downloads

Download data is not yet available.

References

Both, B., Szánthó, Z., & Goda, R. (2016). Air velocity and turbulence distribution in a slot-ventilated room. CLIMA 2016 - Proceedings of the 12th REHVA World Congress, 5.

Chung, K. C., & Hsu, S. P. (2001). Effect of ventilation pattern on room air and contaminant distribution. Building and Environment, 36(9), 989–998. https://doi.org/10.1016/S0360-1323(00)000 51-2

Faulkner, W. B., Memarzadeh, F., Riskowski, G., Kalbasi, A., & Ching-Zu Chang, A. (2015). Effects of air exchange rate, particle size and injection place on particle concentrations within a reduced-scale room. Building and Environ¬ment, 92, 246–255. https://doi.org/10.1016/j. buildenv.2015.04.034

Fulpagare, Y., & Agrawal, N. (2013). Experimental investigation on room air flow pattern & thermal comfort quantification. International Journal of Engineering Sciences & Emerging Technologies, IJESET, 6(1), 120–132. http://www.ijeset. com/media/0002/15N11_IJESET0602120_v6_iss1_120to132.pdf

Gong, N., Tham, K. W., Melikov, A. K., Wyon, D. P., Sekhar, S. C., & Cheong, K. W. (2006). The acceptable air velocity range for local air move-ment in the tropics. HVAC and R Research, 12(4), 1065–1076. https://doi.org/10.1080/107 89669.2006.10391451.

Hawendi, S., & Gao, S. (2016). Investigation of open-ing positions on the natural ventilation in a low-rise building by CFD analysis. International Conference on Fluid Flow, Heat and Mass Transfer, 151, 1–7. https://doi.org/10.11159/ffhmt16.151.

Heiselberg, P., Bjørn, E., & Nielsen, P. v. (2002). Impact of open windows on room airflow and thermal comfort. International Journal of Ventilation, 1(2), 91–100. https://doi.org/10.1080/147 33315.2002.11683625.

Heiselberg, P., Svidt, K., & Nielsen, P. v. (2001). Characteristics of airflow from open windows. Building and Environment, 36(7), 859–869. https://doi.org/10.1016/S0360-1323(01)00012-9

Hu, S. C., Wu, Y. Y., & Liu, C. J. (1996). Measurements of airflow characteristics in a fullscale clean room. Building and Environment, 31(2), 119–128. https://doi.org/10.1016/0360-1323(95) 00039-9

Liu, M., Heiselberg, P. K., Larsen, O. K., Mortensen, L., & Rose, J. (2017). Investigation of different configurations of a ventilated window to optimize both energy efficiency and thermal comfort. Energy Procedia, 132, 478–483. https://doi.org/10.1016/j.egypro.2017.09.660

Liu, X., Lv, X., Peng, Z., & Shi, C. (2020). Experimental study of airflow and pollutant dispersion in crossventilated multiroom buildings: Effects of source location and ventilation path. Sustai-nable Cities and Society, 52, 101822. https://doi. org/10.1016/j.scs.2019.101822

Liu, X., Wu, X., Chen, L., & Zhou, R. (2018). Effects of internal partitions on flow field and air contaminant distribution under different ventilation modes. International Journal of Environmental Research and Public Health, 15(11). https://doi. org/10.3390/ijerph15112603

Marpaung, G. N. (2011). Analisis faktor-faktor yang mempengaruhi konsumen terhadap permintaan perumahan. JEJAK: Jurnal Ekonomi Dan Kebi-jakan, 4(2), 125–134. https://doi.org/10.15294/ jejak.v4i2.4647

Mediastika, C. E. (2002). Desan jendela bangunan domestik untuk mencapai “cooling ventilation” kasus uji: Rumah sederhana luas 45m2 di Yog-yakarta. DIMENSI (Jurnal Teknik Arsitektur), 30(1). http://puslit2.petra.ac.id/ejournal/index. php/ars/article/view/15768.

Memarzadeh, F., & Xu, W. (2012). Role of air changes per hour (ACH) in possible transmission of airborne infections. Building Simulation, 5(1), 15–28. https://doi.org/10.1007/s12273-011-0053-4

Menteri Kesehatan Republik Indonesia. (2011). Per-aturan menteri kesehatan Indonesia No. 1077/ Menkes/PER/2011 tentang pedoman penyehatan udara dalam ruang rumah.

Menteri Permukiman dan Prasarana Wilayah Republik Indonesia. (2002). Keputusan menteri permukiman dan prasarana wilayah nomor: 403/ KPTS/M/2002 tentang pedoman teknis pemba-ngunan rumah sederhana sehat (RS sehat) (p. 6).

Perhimpunan Ergonomi Indonesia. (2013). Antropometri Indonesia.

http://antropometriindonesia.org/index.php/detail/sub/2/7/0/pengantar_antropometri.

Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35(5), 515–526. https://doi.org/10.1016/S0378-7788(02)00163-9.

Prakash, D., & Ravikumar, P. (2015). Analysis of thermal comfort and indoor air flow characteristics for a residential building room under generalized window opening position at the adjacent walls. International Journal of Sustainable Built Environment, 4(1), 42–57. https://doi.org/ 10.1016/j.ijsbe.2015.02.003

Sabaruddin, A., Hartini, & Hermawan, Y. (2011). Modul Rumah Sehat. Kementerian Pekerjaan Umum, Badan Penelitian dan Pengambangan, Pusat Penelitian dan Pengembangan Permukiman.

Sacht, H., & Lukiantchuki, M. A. (2017). Windows size and the performance of natural ventilation. Procedia Engineering, 196(June), 972–979. https://doi.org/10.1016/j.proeng.2017.08.038

Setyawan, H. A. (2020). Kebutuhan rumah baru. Kompas. https://kompas.id/baca/gaya-hidup/20 20/06/06/kebutuhan-rumah-baru/#:~:text=Menurut data Kementerian PUPR%2C angka, mencapai 7%2C6 juta unit.&text=Terdiri dari 945.161 unit rumah,unit rumah untuk non MBR.

Simorangkir, E. (2018). Ini tipe rumah paling diminati orang RI. Detik Finance. https://finance.detik. com/properti/d-4209825/ini-tipe-rumah-paling-diminati-orang-ri

Suryanto HS, M. (2010). Analisis kepuasan konsumen rumah tipe 36 (Studi kasus perumahan Pondok Permata Suci Gresik). WAKTU Jurnal Teknik UNIPA, 08(2), 43–53. http://jurnal.unipa-sby.ac.id/index.php/waktu/article/view/847.

Tanabe, S., & Kimura, K. (1989). Importance of air movement for thermal comfort under hot and humid conditions. Proceedings of the Second ASHRAE Far East Conference on Air Conditioning in Hot Climates, Kuala Lumpur, Malaysia, January, 95–103.

Wargocki, P. (2013). The effects of ventilation in homes on health. International Journal of Ventilation, 12(2), 101–118. https://doi.org/10.1080/ 14733315.2013.11684005

Widiastuti, R., Hasan, M. I., Bramiana, C. N., & Pramesti, P. U. (2020). CFD simulation on the natural ventilation and building thermal perfor-mance. IOP Conference Series: Earth and Envi-ronmental Science, 448(1). https://doi.org/10. 1088/1755-1315/448/1/012004

Xia, Y., Zhao, R., & Niu, J. (2000). Effect of turbulent intensity on human thermal sensation in isother-mal environment. Qinghua Daxue Xuebao/Journal of Tsinghua University, 40(10), 100–103.

Yang, T. Y., Riskowski, G. L., & Chang, A. C. Z. (2019). Effects of air relative humidity and ventilation rate on particle concentrations within a reduced-scale room. Indoor and Built Environment, 28(3), 335–344. https://doi.org/10.1177/1420326X18773134.

Downloads

Published

2021-12-16

How to Cite

lestari, lestari, & Muazir, S. (2021). COMPARISON OF AIRFLOW IN TYPE 36 LOW-INCOME HOUSING UNIT USING CFD SIMULATION. Dimensi: Journal of Architecture and Built Environment, 48(2), 121-130. https://doi.org/10.9744/dimensi.48.2.121-130