• Aris Budhiyanto



Building envelope, window-to-wall ratio, cooling energy, operative temperature, comfort temperature.


This study presents an investigation of the effect of building envelope, especially glass facade buildings on cooling energy usage and thermal comfort. An office building was modeled with various window-to-wall ratio (WWR) using panasap glass with SC=0.58 in order to analyze the effect of the WWR addition on cooling energy usage and comfort temperature. The result suggested that the average increase of the cooling energy usage is about 5.67% per 10% WWR addition, and of the operative temperature ranges from 0.350C to 0.560C per 10% WWR addition. Moreover, the building with above 20% WWR doesn’t provide comfort temperature.


Download data is not yet available.


Chow, T.T., Fong, K.F., Givoni, B., Lin, Z. & Chan, A.L.S. (2010). Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air conditioned environment. Building and Environment, 45(10), pp.2177–2183.

Crawley, D.B., Lawrie, L.K., Winkelmann, F.C. & Pedersen, C.O. (2001). EnergyPlus: New Capabilities in a Whole Building Energy Simulation Program. Building Simulation 2001, pp.51–58. Retrieved from

Dahlan, N.D., Jones, P.J. & Alexander, D.K. (2011). Operative temperature and thermal sensation assessments in non-air-conditioned multi-storey hostels in Malaysia. Building and Environment, 46(2), pp.457–467. j.buildenv.2010.08.007

Dinapradipta, A. (2015). Office building facades for functionality and adaptability in humid tropical cities : multicase studies of office buildings in Jakarta-Indonesia. Technische Universiteit Eindhoven General, Eindhoven.

Eder, K. & Bednar, T. (2015). Effect of facade sys-tems on the performance of cooling ceilings: In situ measurements. Frontiers of Architectural Research, 4(1), pp.68–78. j.foar.2014.11.003.

Halawa, E., van Hoof, J. & Soebarto, V. (2014). The impacts of the thermal radiation field on thermal comfort, energy consumption and control—A critical overview. Renewable and Sustainable Energy Reviews, 37, pp.907–918. 10.1016/j.rser.2014.05.040.

Hwang, R.L. & Shu, S.Y. (2011). Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Building and Environ-ment, 46(4), pp.824–834. j.buildenv.2010.10.009.

Janicki, M. & Heim, D. (2013). Double criterion optimisation of transparent facades based on solar thermal processes. Frontiers of Architectural Research, 2(1), pp.23–29. 10.1016/j.foar.2012.11.005.

Karyono, T.H. (2015). Predicting Comfort Tempe-rature in Indonesia, an Initial Step to Reduce Cooling Energy Consumption. Buildings, 5, pp. 802–813. 802.

Koo, C., Park, S., Hong, T. & Park, H.S. (2014). An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method. Applied Energy, 114, pp.205–215. http://doi. org/10.1016/j.apenergy.2014.12.051

Loekita, S. (2007). Analisis Konservasi Energi Melalui Selubung Bangunan. Civil Engineering Dimension, 8(2), pp. 93–98.

Ma, P., Wang, L.S. & Guo, N. (2015). Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude. Applied Energy, 146, pp.84–91.

Mintorogo, D.S. (2006). Unsustainable Building Façades and Fashions in Surabaya. DIMENSI (Jurnal Teknik Arsitektur), 34(1), pp.67–72.

Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L.N., Yusoff, W.F.M. & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high rise buildings in hothumid climate. Renewable and Sustainable Energy Reviews, 53, pp.1508–1519.

Mui, K.W., Wong, L.T. & Fong, N.K. (2010). Optimization of indoor air temperature set point for centralized air conditioned spaces in sub-tropical climates. Automation in Construction, 19(6), pp.709–713.

Ng, P.K., Mithraratne, N. & Wei Kua, H. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy & Buildings, 66, pp.274–281. 2013.07.029

Pereira, W., Bögl, A. & Natschläger, T. (2014). Sensitivity analysis and validation of an EnergyPlus model of a house in Upper Austria. Energy Procedia, 62, pp.472–481. 10.1016/j.egypro.2014.12.409

Santoso, A.J. & Antaryama, I.G.N. (2005). Konsekuensi Energi Akibat Pemakaian Bidang Kaca Pada Bangunan Tinggi Di Daerah Tropis Lembab. DIMENSI (Jurnal Teknik Arsitektur), 33(1), pp.70–75. 33.1.

Saud, M. I. (2012). Pengaruh Konfigurasi Window to Wall Ratio, Solar Heat Gain Coefficient dan Orientasi Bangunan Terhadap Kinerja Termal Selubung Bangunan, Simulasi Bangunan Hipotetik Perkantoran Berlantai Banyak Berdasarkan Data Iklim Jakarta. Gadjah Mada University.

Wang, L.S., Ma, P., Hu, E., Giza-Sisson, D., Mueller, G. & Guo, N. (2014). A study of building envelope and thermal mass requirements for achieving thermal autonomy in an office building. Energy and Buildings, 78, pp.79–88.

Wibowo, A. P. (2014). Kaca Sebagai Elemen Passive Cooling System. In Prosiding Seminar Nasional Ke-9, Rekayasa Teknologi Industri dan Informasi 2014, Eco Technology: Paradigma Pembangunan Masa Depan untuk Mendukung Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia (pp.83–89). Yogyakarta: Sekolah Tinggi Teknologi Nasional.

Winkelmann, F.C. (2001). Modeling Windows in EnergyPlus. In Seventh International IBPSA Conference (pp.457–464). Rio de Janeiro.




How to Cite

Budhiyanto, A. (2017). THE EFFECT OF THE WINDOW-TO-WALL RATIO ON COOLING ENERGY USAGE AND COMFORT TEMPERATURE. Dimensi: Journal of Architecture and Built Environment, 44(2), 189-194.