Effect of Coconut Fiber Wall Panels on Humidity Conditions in a Tropical House

Authors

  • Wila Prakasita Scotiswara Supomo Institut Teknologi Sepuluh Nopember
  • I Gusti Ngurah Antaryama Institut Teknologi Sepuluh Nopember
  • FX Teddy Badai Samodra Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.9744/dimensi.51.2.73-82

Keywords:

coconut fiber wall panel, moisture adsorption, small tropical house

Abstract

Houses in warm and humid tropical regions, like Indonesia, often experience uncomfortable conditions due to high temperatures aggravated by high humidity. With its adsorptive characteristics, natural coconut fiber can be utilized as wall panels and assigned to regulate house humidity levels. Research focusing on investigating the adsorptive capability of the natural coconut fiber in controlling humidity is widely available, but that specifically examines the effect of the surface area of the material on air humidity conditions in humid tropical extant houses is still limited. A field experiment was conducted in a small Surabaya house. The study analyzes the impact of coconut fiber (CF) wall panels on humidity conditions in each house room and the optimal surface area of the wall panels. CF wall panels were found to reduce the indoor relative humidity (RH) significantly. The optimal surface area varied depending on room characteristics. The optimal surface area of the wall panels for the living room is six (6) m² with a 28% RH reduction, for the bedroom is six (6) m² with a 27% reduction, and for the kitchen is five (5) m² with a 27% reduction.

Downloads

Download data is not yet available.

Author Biographies

I Gusti Ngurah Antaryama, Institut Teknologi Sepuluh Nopember

Department of Architecture, Institut Teknologi Sepuluh Nopember

FX Teddy Badai Samodra, Institut Teknologi Sepuluh Nopember

Department of Architecture, Institut Teknologi Sepuluh Nopember

References

Alfrida, F. N., & Putranto, A. D. (2017). Optimalisasi rumah murah tipe 36 menjadi rumah sehat studi kasus Perumahan Bulan Terang Utama, Malang. Jurnal Mahasiswa Departemen Arsitektur Universitas Brawijaya, 5(4).

Avubothu, M., Ponaganti, S., Sunkari, R., & Ganta, M. (2022). Effect of high temperature on coconut fiber reinforced concrete. Materials Today: Proceedings, 52, 1197–1200. https://doi.org/10.1016/j.matpr.2021.11.036

Cheekatamarla, P. K., Sharma, V., & Shrestha, S. (2022). Energy-efficient building technologies. In Advanced Nanomaterials and Their Applications in Renewable Energy (3–33). Elsevier. https://doi.org/10.1016/B978-0-323-99877-2.00019-9

Chi Tien, J. (2019). Introduction to adsorption: Basic, Analysis and Applications. Amsterdam: Elsevier.

Crittenden, B., & Thomas, W. J. (1998). Adsorption technology and design. Oxford: Butterworth-Heinemann.

Danso, H. (2017). Properties of coconut, oil palm and bagasse fibres: As potential building materials. Procedia Engineering, 200, 1–9. https://doi.org/10.1016/j.proeng.2017.07.002

Das, G., & Biswas, S. (2016). Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites. Journal of Reinforced Plastics and Composites, 35(8), 628–637. https://doi.org/10.1177/0731684415626594

Fajriyanto, & Firdaus, F. (2007). Panel dinding bangunan ramah lingkungan dari komposit limbah pabrik kertas (sludge), sabut kelapa dan sampah plastik : Pengaruh komposisi bahan dan beban pengempaan terhadap kuat lentur (bending). Seminar Nasional Teknoin 2008 Bidang Teknik Mesin, January 2008, 55–62.

Husein, M. A. (2018). Analisis penggunaan serat ijuk dan sabut kelapa sebagai insulator ruang muat kapal jenis purse seine. Institut Teknologi Sepuluh Nopember.

Indahyani, T. (2011). Pemanfaatan limbah sabut kelapa pada perencanaan interior dan furniture yang berdampak pada pemberdayaan masyarakat miskin. Humaniora, 2(1), 15. https://doi.org/10.21512/humaniora.v2i1.2941

Khoshnava, S. M., Rostami, R., Mohamad Zin, R., Štreimikienė, D., Mardani, A., & Ismail, M. (2020). The role of green building materials in reducing environmental and human health impacts. International Journal of Environmental Research and Public Health, 17(7), 2589. https://doi.org/10.3390/ijerph17072589

Khumaira, H. H., & Hendrawati, D. (2022). Airflow evaluation from natural ventilation in closed room as prevention of covid-19 transmission, case study: Architecture studio room, Faculty of Civil Engineering and Planning Building, UII. Seminar Karya & Pameran Arsitektur Indonesia 2022 Design Computation for Sustainable Architecture & Urbanism.

Leão, R. M., Luz, S. M., Araujo, J. A., & Novack, K. (2015). Surface treatment of coconut fiber and its application in composite materials for reinforcement of polypropylene. Journal of Natural Fibers, 12(6), 574–586. https://doi.org/10.1080/15440478.2014.984048

Lucas, F., Adelard, L., Garde, F., & Boyer, H. (2002). Study of moisture in buildings for hot humid climates. Energy and Buildings, 34, 345–355.

Ma, L., Shao, N., Zhang, J., & Zhao, T. (2015). The influence of doors and windows on the indoor temperature in rural house. Procedia Engineering, 121, 621–627. https://doi.org/10.1016/j.proeng.2015.08.1051

McNaney, J. M., Gilbert, C. J., & Ritchie, R. O. (1999). Effect of viscous grain bridging on cyclic fatigue-crack growth in monolithic ceramics at elevated temperatures. Acta Materialia, 47(9), 2809–2819. https://doi.org/10.1016/S1359-6454(99)00121-4

Mintorogo, D. S., Widigdo, W. K., & Juniwati, A. (2015). Application of coconut fibres as outer eco-insulation to control solar heat radiation on horizontal concrete slab rooftop. Procedia Engineering, 125, 765–772. https://doi.org/10.1016/j.proeng.2015.11.129

Mohan, B. S., Tiwari, S., & Maiya, M. P. (2015). Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner. Applied Thermal Engineering, 77, 153–162. https://doi.org/10.1016/j.applthermaleng.2014.12.004

Moon, H. J., Ryu, S. H., & Kim, J. T. (2014). The effect of moisture transportation on energy efficiency and IAQ in residential buildings. Energy and Buildings, 75, 439–446. https://doi.org/10.1016/j.enbuild.2014.02.039

Parsons, K. (2014). Human thermal environments: The effects of hot, moderate, and cold environments on human health, comfort, and performance. In Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance, Third Edition (third edit). https://doi.org/10.1201/b16750

Pramitasari, P. H. (2012). Karakterisasi dinding serat alami untuk pengendalian kelembaban udara ruang dalam di daerah beriklim tropis lembab. Institut Teknologi Bandung.

Pramitasari, P. H. (2016). Potensi bahan organik sebagai pengatur kelembaban udara pada bangunan di daerah tropis lembab. Review of Urbanism and Architectural Studies, 14(1), 52–58. https://doi.org/10.21776/ub.ruas.2016.014.01.6

R, S., & Maitra, S. (2020). Evaluation of pore size and surface morphology during devolatilization of coconut fiber and sugarcane bagasse. Combustion Science and Technology, 192(12), 2326–2344. https://doi.org/10.1080/00102202.2019.1645655

Rafiqi, I., & Mahjoeddin, Y. (2022). Pengaruh komposisi campuran serat sabut kelapa dan lateks terhadap sifat konduktivitas termal. Undergraduate Research Bung Hatta University, 20(2).

Randi, P., & Yovial, M. (2022). Pengaruh komposisi campuran serat sabut kelapa dan lateks terhadap sifat elastisitas. Undergraduate Research Bung Hatta University, 20(2).

Raval, A., & Ramanathan, V. (1989). Observational determination of the greenhouse effect. Nature, 342(6251), 758–761. https://doi.org/10.1038/342758a0

Ren, Q., Zeng, Z., Xie, M., & Jiang, Z. (2020). Cement-based composite with humidity adsorption and formaldehyde removal functions as an indoor wall material. Construction and Building Materials, 247, 118610. https://doi.org/10.1016/j.conbuildmat.2020.118610

Sales, J. H., Santo, K. D. E., Junior, C. C. M. F., & Amarante-Segundo, G. S. (2021). Coconut fiber sensor for humidity. Brazilian Journal of Development, 7(2), 17707–17720. https://doi.org/10.34117/bjdv7n2-423

Setyarini, N. F. (2011). Pemanfaatan limbah kertas, sekam padi, dan sabut kelapa sebagai bahan panel penghambat panas lingkungan fisik kerja. Skripsi, Universitas Sebelas Maret.

Shang, J., Zong, Z., & Zhang, H. (2017). Synthesis and analysis of new humidity-controlling composite materials. International Journal of Minerals, Metallurgy, and Materials, 24(5), 594–602. https://doi.org/10.1007/s12613-017-1441-2

Shariff, K. A., Juhari, M. S., Chan, L. W. L., & Kasim, S. R. (2020). Effect of different firing temperature on thermal conductivity of ceramic tiles. Materials Science Forum, 1010, 665–671. https://doi.org/10.4028/www.scientific.net/MSF.1010.665

Simanjuntak, L., & Mahda, N. M. R. (2019). Pemanfaatan serat serabut kelapa sebagai dinding akustik partisi. Journal of Civil Engineering, Building and Transportation, 2(1), 12. https://doi.org/10.31289/jcebt.v2i1.1958

Yang, X., Fazio, P., Ge, H., & Rao, J. (2012). Evaluation of moisture buffering capacity of interior surface materials and furniture in a full-scale experimental investigation. Building and Environment, 47(1), 188–196. https://doi.org/10.1016/j.buildenv.2011.07.025

Yang, Y., Shen, Z., Wu, W., Zhang, H., Ren, Y., & Yang, Q. (2022). Preparation of a novel diatomite-based PCM gypsum board for temperature-humidity control of buildings. Building and Environment, 226, 109732. https://doi.org/10.1016/j.buildenv.2022.109732

Zhang, H., Yoshino, H., Hasegawa, K., Liu, J., Zhang, W., & Xuan, H. (2017). Practical moisture buffering effect of three hygroscopic materials in real-world conditions. Energy and Buildings, 139, 214–223. https://doi.org/10.1016/j.enbuild.2017.01.021

Downloads

Published

2024-12-11

How to Cite

Supomo, W. P. S., Antaryama, I. G. N., & Samodra, F. T. B. (2024). Effect of Coconut Fiber Wall Panels on Humidity Conditions in a Tropical House. Dimensi: Journal of Architecture and Built Environment, 51(2), 73–82. https://doi.org/10.9744/dimensi.51.2.73-82