DOI: https://doi.org/10.9744/dimensi.47.2.55-64
A COMPARISON OF HEAT PERFORMANCE BETWEEN GREEN ROOFS ON CONCRETE AND GREEN ROOFS ON CORRUGATED ZINC
Abstract
Keywords
Full Text:
PDFReferences
Altomonte, S., Schiavon, S., Kent, M. G., & Brager, G. (2017). Indoor environmental quality and occupant satisfaction in green-certified buildings. Building Research and Information, 1–20. https://doi.org/10.1080/09613218.2018.1383715
Aly, A. M., Chokwitthaya, C., & Poche, R. (2017). Retro fi tting building roofs with aerodynamic features and solar panels to reduce hurricane damage and enhance eco-friendly energy production. Sustainable Cities and Society, 35(October 2016), 581–593. https://doi.org/10.1016/j.scs.2017.09.002
Ambrosini, D., Galli, G., Mancini, B., Nardi, I., & Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model. 7013–7029. https://doi.org/10.3390/su6107013
Baraldi, R., Neri, L., Costa, F., Facini, O., Rapparini, F., & Carriero, G. (2019). Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation. Urban Forestry and Urban Greening. https://doi.org/10.1016/j.ufug.2018.03.002
Carbone, M., Garofalo, G., Nigro, G., & Piro, P. (2014). A conceptual model for predicting hydraulic behaviour of a green roof. Procedia Engineering, 70, 266–274. https://doi.org/10.1016/j.proeng.2014.02.030
Carvalho, D., Martins, H., Marta-almeida, M., Rocha, A., & Borrego, C. (2017). Urban Climate Urban resilience to future urban heat waves under a climate change scenario : A case study for Porto urban area ( Portugal ). Urban Climate, 19, 1–27. https://doi.org/10.1016/j.uclim.2016.11.005
Costanzo, V., Evola, G., & Marletta, L. (2016). Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy and Buildings, 114, 247–255. https://doi.org/10.1016/j.enbuild.2015.04.053
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Method. In Research design Qualitative quantitative and mixed methods approaches. https://doi.org/10.1007/s13398-014-0173-7.2
Gaspari, J., & Fabbri, K. (2019). Greening Actions and the Related Potential Impacts on Outdoor Comfort in a Dense Built Environment. IOP Conference Series: Earth and Environmental Science, 290(1). https://doi.org/10.1088/1755-1315/290/1/012163
Ge, Z., Xu, G., Poh, H. J., Ooi, C. C., & Xing, X. (2019). CFD simulations of thermal comfort for naturally ventilated school buildings. IOP Conference Series: Earth and Environmental Science, 238(1). https://doi.org/10.1088/1755-1315/238/1/012073
Gromke, C., Blocken, B., Janssen, W., Merema, B., van Hooff, T., & Timmermans, H. (2015). CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Building and Environment, 83, 11–26. https://doi.org/10.1016/j.buildenv.2014.04.022
Herrera, J., Flamant, G., Gironás, J., Vera, S., Bonilla, C. A., Bustamante, W., & Suárez, F. (2018). Using a hydrological model to simulate the performance and estimate the runoffcoefficient of green roofs in semiarid climates. Water (Switzerland), 10(2). https://doi.org/10.3390/w10020198
MacIvor, J. S., Cadotte, M. W., Livingstone, S. W., Lundholm, J. T., & Yasui,
S. L. E. (2016). Phylogenetic ecology and the greening of cities. Journal of Applied Ecology, 53(5). https://doi.org/10.1111/1365-2664.12667
Park, S. J., Choi, W., Kim, J. J., Kim, M. J., Park, R. J., Han, K. S., & Kang, G. (2016). Effects of building–roof cooling on the flow and dispersion of reactive pollutants in an idealized urban street canyon. Building and Environment, 109(2), 175–189. https://doi.org/10.1016/j.buildenv.2016.09.011
Qin, H., Hong, B., & Jiang, R. (2018). Are green walls better options than green roofs for mitigating PM10 pollution? CFD simulations in urban street canyons. Sustainability (Switzerland), 10(8). https://doi.org/10.3390/su10082833
Rafael, S., Vicente, B., Rodrigues, V., Miranda, A. I., Borrego, C., & Lopes, M. (2018). Impacts of green infrastructures on aerodynamic fl ow and air quality in Porto ’ s urban area. Atmospheric Environment, 190(July), 317–330. https://doi.org/10.1016/j.atmosenv.2018.07.044
Rakotondramiarana, H., Ranaivoarisoa, T., & Morau, D. (2015). Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar. Buildings, 5(2). https://doi.org/10.3390/buildings5020497
Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90(March), 757–773. https://doi.org/10.1016/j.rser.2018.04.006
Silva, C. M., Gomes, M. G., & Silva, M. (2016). Green roofs energy performance in Mediterranean climate. Energy and Buildings, 116, 318–325. https://doi.org/10.1007/s12197-016-9374-6
Stovin, V., Vesuviano, G., & De-Ville, S. (2017). Defining green roof detention performance. Urban Water Journal, 14(6), 574–588. https://doi.org/10.1080/1573062X.2015.1049279
Van Renterghem, T., Hornikx, M., Forssen, J., & Botteldooren, D. (2013). The potential of building envelope greening to achieve quietness. Building and Environment, 61, 34–44. https://doi.org/10.1016/j.buildenv.2012.12.001
Vera, S., Pinto, C., Tabares-Velasco, P. C., & Bustamante, W. (2018). A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools. In Applied Energy (Vol. 232).
DOI: https://doi.org/10.9744/dimensi.47.2.55-64
The Journal is published by The Institute of Research & Community Outreach - Petra Christian University. It available online supported by Directorate General of Higher Education - Ministry of National Education - Republic of Indonesia.
©All right reserved 2016.Dimensi, ISSN: 0126-219X, e-ISSN: 2338-7858